# Series : SGN/C

रोल नं. Roll No. परीक्षार्थी कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें । Candidates must write the Code on the title page of the answer-book.

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 12 हैं ।
- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 26 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 12 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 26 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

# रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे Time allowed : **3** hours अधिकतम अंक : 70 Maximum Marks : 70

## सामान्य निर्देश ः

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) प्रश्न-संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है।
- (iii) प्रश्न-संख्या 6 से 10 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं।
- (iv) प्रश्न-संख्या 11 से 22 तक भी लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं।
- (v) प्रश्न-संख्या 23 मूल्याधारित प्रश्न है और इसके लिए 4 अंक हैं।
- (vi) प्रश्न-संख्या 24 से 26 तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 5 अंक हैं।

1

(vii) यदि आवश्यकता हो, तो लॉग टेबलों का प्रयोग करें । कैल्कुलेटरों के उपयोग की अनुमति नहीं हैं ।

56/2





C/1

**SET – 2** 



### **General Instructions :**

- (i) All questions are compulsory.
- (ii) Questions number 1 to 5 are very short-answer questions and carry 1 mark each.
- (iii) Questions number 6 to 10 are short-answer questions and carry 2 marks each.
- *(iv) Questions number* 11 to 22 are also short-answer questions and carry 3 marks each.
- (v) Question number 23 is a value based question and carry 4 marks.
- (vi) Questions number 24 to 26 are long-answer questions and carry 5 marks each.
- (vii) Use log tables, if necessary. Use of calculators is not allowed.

## 1. $[Cu(NH_3)_4][PtCl_4]$ का उपसहसंयोजन समावयव लिखिए ।

Write the coordination isomer of  $[Cu(NH_3)_4][PtCl_4]$ .

 सोडियम एथॉक्साइड की तृतीयक ब्यूटिल क्लोराइड से अभिक्रिया होने पर प्राप्त मुख्य उत्पाद की प्रागुक्ति कीजिए।

Predict the major product formed when sodium ethoxide reacts with tert.Butyl chloride.

 अभिक्रिया A → B के लिए, जब A की सान्द्रता नौ गुनी बढ़ाई जाती है तो अभिक्रिया वेग तीन गुना हो जाता है । अभिक्रिया की कोटि क्या है ?

For the reaction  $A \rightarrow B$ , the rate of reaction becomes three times when the concentration of A is increased by nine times. What is the order of reaction ?

4. अधिशोषण हमेशा ऊष्माक्षेपी क्यों होता है ?

Why is adsorption always exothermic?

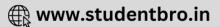
5. एक ऐरोमेटिक कार्बनिक यौगिक 'A' जिसका अणुसूत्र C<sub>8</sub>H<sub>8</sub>O है धनात्मक DNP और आयडोफॉर्म परीक्षण देता है । यह टॉलेन अभिकर्मक को अपचयित नहीं करता है और ब्रोमीन जल को भी रंगहीन नहीं करता है । 'A' की संरचना लिखिए ।

An aromatic organic compound 'A' with molecular formula  $C_8H_8O$  gives positive DNP and iodoform tests. It neither reduces Tollens' reagent nor does it decolourise bromine water. Write the structure of 'A'.

2

56/2

C/1


1

1

1

1





- 6. निम्नलिखित की पहचान कीजिए :
  - (i) 3d श्रेणी की संक्रमण धातु जो सबसे अधिक ऑक्सीकरण अवस्थाएँ दर्शाती है।
  - (ii) एक मिश्रातु जिसमें लगभग 95% लैन्थेनॉयड धातु होती है और जो बंदूक की गोली, कवच (खोल) तथा हलके फ्लिंट के उत्पादन में प्रयुक्त होती है।

Identify the following :

- (i) Transition metal of 3d series that exhibits the maximum number of oxidation states.
- (ii) An alloy consisting of approximately 95% lanthanoid metal used to produce bullet, shell and lighter flint.
- 7. निम्नलिखित की संरचनाएँ आरेखित कीजिए :
  - (i)  $XeF_2$
  - (ii) BrF<sub>5</sub>

Draw the structures of the following :

- (i)  $XeF_2$
- (ii) BrF<sub>5</sub>
- कार्बन डाइसल्फाइड और ऐसीटोन का मिश्रण राउल्ट नियम से धनात्मक विचलन क्यों दर्शाता है ? इस मिश्रण से किस प्रकार का स्थिरकाथी बनता है ?

Why a mixture of Carbon disulphide and acetone shows positive deviation from Raoult's law? What type of azeotrope is formed by this mixture?

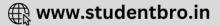
9. AgNO<sub>3</sub> विलयन वाले किसी वैद्युत-अपघटनी सेल में निष्क्रिय इलेक्ट्रोडों के साथ 1.50 A की विद्युतधारा प्रवाहित करने पर 1.50 g सिल्वर निक्षेपित हुई । विद्युतधारा कितने समय तक प्रवाहित हुई ? (Ag का मोलर द्रव्यमान = 108 g mol<sup>-1</sup>, 1F = 96500 C mol<sup>-1</sup>)

#### अथवा

298 K पर एसीटिक अम्ल के 0.01 M विलयन की चालकता  $1.65 \times 10^{-4} \text{ S cm}^{-1}$  है । विलयन की मोलर चालकता ( $\wedge_m$ ) का परिकलन कीजिए ।

A current of 1.50 A was passed through an electrolytic cell containing  $AgNO_3$  solution with inert electrodes. The weight of silver deposited was 1.50 g. How long did the current flow ? (Molar mass of  $Ag = 108 \text{ g mol}^{-1}$ ,  $1F = 96500 \text{ C mol}^{-1}$ ).

#### OR


The conductivity of a 0.01 M solution of acetic acid at 298 K is  $1.65 \times 10^{-4}$  S cm<sup>-1</sup>. Calculate molar conductivity ( $\wedge_m$ ) of the solution.

3

56/2

C/1





2

2

2

10. निम्नलिखित यौगिकों में से कौन  $S_N^2$  अभिक्रिया के प्रति अधिक अभिक्रियाशील है और क्यों ?

2

3

CH<sub>3</sub>CH(Cl)CH<sub>2</sub>CH<sub>3</sub> अथवा CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>Cl

Which one of the following compounds is more reactive towards  $S_N^2$  reaction and why ?

```
CH<sub>3</sub>CH(Cl)CH<sub>2</sub>CH<sub>3</sub> or CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>Cl
```

- 11. निम्नलिखित बहुलकों के बनने से सम्बद्ध एकलकों के सूत्र दीजिए :
  - (i) ब्यूना-N
  - (ii) नायलॉन-6
  - (iii) डैक्रॉन

Give the formula of monomers involved in the formation of the following polymers :

- (i) Buna-N
- (ii) Nylon-6
- (iii) Dacron
- 12. 200 g जल में 10.5 g मैग्नीशियम ब्रोमाइड वाले जलीय विलयन का, यह मानते हुए कि मैग्नीशियम ब्रोमाइड पूर्णतया वियोजित है, हिमांक परिकलित कीजिए।

(मैग्नीशियम ब्रोमाइड का मोलर द्रव्यमान =  $184 \text{ g mol}^{-1}$ , जल के लिए  $K_f = 1.86 \text{ K kg mol}^{-1}$ )

Calculate the freezing point of an aqueous solution containing 10.5 g of Magnesium bromide in 200 g of water, assuming complete dissociation of Magnesium bromide.

(Molar mass of Magnesium bromide =  $184 \text{ g mol}^{-1}$ ,  $K_f$  for water =  $1.86 \text{ K kg mol}^{-1}$ ).

- 13. निम्न संकुलों के IUPAC नाम लिखिए :
  - (i)  $[Ni(NH_3)_6]Cl_2$
  - (ii)  $K_3[Fe(CN)_6]$
  - (iii)  $[Co(en)_3]^{3+}$

Write IUPAC name for each of the following complexes :


- (i)  $[Ni(NH_3)_6]Cl_2$
- (ii)  $K_3[Fe(CN)_6]$
- (iii)  $[Co(en)_3]^{3+}$

56/2

4

C/1





3

- 14. निम्नलिखित अवलोकनों के लिए कारण दीजिए :
  - जब सिल्वर नाइट्रेट विलयन को पोटैशियम आयोडाइड विलयन में मिलाया जाता है तो ऋण आवेशित कोलॉइडी विलयन प्राप्त होता है।
  - (ii) सूक्ष्म विभाजित पदार्थ अधिक प्रभावी अधिशोषक होता है।
  - (iii) द्रवरागी कोलॉइडों को उत्क्रमणीय सॉल भी कहते हैं।

Give reason for the following observations :

- (i) When Silver nitrate solution is added to Potassium iodide solution, a negatively charged colloidal solution is formed.
- (ii) Finely divided substance is more effective as an adsorbent.
- (iii) Lyophilic colloids are also called reversible sols.
- 15. (i) निम्नलिखित अभिक्रिया को पूर्ण कीजिए और अभिक्रिया के लिए उपयुक्त क्रियाविधि सुझाइए :

 $CH_3CH_2OH \xrightarrow{H^+, 443 \text{ K}}$ 

- (ii) आर्थो-नाइट्रोफीनॉल भाप द्वारा वाष्पित क्यों होता है जबकि पैरा-नाइट्रोफीनॉल कम वाष्पशील होता है ?
- (i) Complete the following reaction and suggest a suitable mechanism for the reaction :

 $CH_{3}CH_{2}OH \xrightarrow{H^{+}, 443 \text{ K}} \rightarrow$ 

- (ii) Why ortho-Nitrophenol is steam volatile while para-Nitrophenol is less volatile ?
- 16. प्राप्त उत्पाद लिखिए जब :
  - (i) 2-ब्रोमोप्रोपेन विहाइड्रोहैलोजनीकरण अभिक्रिया देता है।
  - (ii) क्लोरोबेन्जीन नाइट्रीकरण अभिक्रिया देता है।
  - (iii) मेथिल ब्रोमाइड को KCN से अभिकृत किया जाता है।

Write the product(s) formed when

- (i) 2-Bromopropane undergoes dehydrohalogenation reaction.
- (ii) Chlorobenzene undergoes nitration reaction.
- (iii) Methylbromide is treated with KCN.

56/2

C/1

3

3





- 17. एक अभिक्रिया A के प्रति प्रथम तथा B के प्रति द्वितीय कोटि की है :
  - (i) अवकल वेग समीकरण लिखिए।
  - (ii) B की सांद्रता तीन गुनी करने से वेग पर क्या प्रभाव पड़ेगा ?
  - (iii) A तथा B दोनों की सांद्रता दुगुनी करने से वेग पर क्या प्रभाव पड़ेगा ?

A reaction is first order in A and second order in B

- (i) Write the differential rate equation.
- (ii) How is the rate affected on increasing the concentration of B three times ?
- (iii) How is the rate affected when the concentration of both A and B are doubled ?
- 18. (i) निम्नलिखित समीकरणों को पूर्ण कीजिए :

(a) 
$$2MnO_4^- + 5SO_3^{2-} + 6H^+ \rightarrow$$

(b) 
$$\operatorname{Cr}_2 \operatorname{O}_7^{2-} + 6\operatorname{Fe}^{2+} + 14\operatorname{H}^+ \rightarrow$$

 (ii) दिए गए आँकड़ों के आधार पर Fe<sup>2+</sup>, Mn<sup>2+</sup> और Cr<sup>2+</sup> को उनकी +2 ऑक्सीकरण अवस्थाओं के स्थायित्व के बढ़ते हुए क्रम में व्यवस्थित कीजिए :

$$E^{\circ}Cr^{3+}/Cr^{2+} = -0.4 V$$

$$E^{\circ}Mn^{3+}/Mn^{2+} = +1.5$$
 V

$$E^{\circ}Fe^{3+}/Fe^{2+} = +0.8 V$$

#### अथवा

6

निम्नलिखित के विरचन को लिखिए :

- (i) K<sub>2</sub>MnO<sub>4</sub> से KMnO<sub>4</sub>
- (ii)  $FeCr_2O_4$  से  $Na_2CrO_4$

(iii) 
$$\operatorname{CrO}_4^{2-}$$
 से  $\operatorname{Cr}_2\operatorname{O}_7^{2-}$ 

(i) Complete the following equations :

(a) 
$$2MnO_4^- + 5SO_3^{2-} + 6H^+ \rightarrow$$

(b) 
$$\operatorname{Cr}_2 \operatorname{O}_7^{2-} + 6\operatorname{Fe}^{2+} + 14\operatorname{H}^+ \rightarrow$$

56/2

C/1





(ii) Based on the data, arrange  $Fe^{2+}$ ,  $Mn^{2+}$  and  $Cr^{2+}$  in the increasing order of stability of +2 oxidation state.

$$E^{\circ}Cr^{3+}/Cr^{2+} = -0.4 V$$
  
 $E^{\circ}Mn^{3+}/Mn^{2+} = +1.5 V$   
 $E^{\circ}Fe^{3+}/Fe^{2+} = +0.8 V$ 

## OR

Write the preparation of following :

- (i)  $KMnO_4$  from  $K_2MnO_4$
- (ii)  $Na_2CrO_4$  from FeCr<sub>2</sub>O<sub>4</sub>

(iii) 
$$\operatorname{Cr}_2 \operatorname{O}_7^{2-}$$
 from  $\operatorname{Cr}\operatorname{O}_4^{2-}$ 

19. निम्नलिखित अभिक्रिया पर विचार कीजिए :

 $Cu(s) + 2Ag^{+}(aq) \rightarrow 2Ag(s) + Cu^{2+}(aq)$ 

- (i) उस गैल्वनी सेल को दर्शाइए जिसमें दी हुई अभिक्रिया होती है।
- (ii) विद्युतधारा के प्रवाह की दिशा दीजिए।
- (iii) कैथोड और ऐनोड पर होने वाली अर्ध-सेल अभिक्रियाएँ लिखिए।

Consider the following reaction :

 $Cu(s) + 2Ag^{+}(aq) \rightarrow 2Ag(s) + Cu^{2+}(aq)$ 

- (i) Depict the galvanic cell in which the given reaction takes place.
- (ii) Give the direction of flow of current.
- (iii) Write the half-cell reactions taking place at cathode and anode.
- 20. निर्देशानुसार कीजिए :
  - (i) निम्नलिखित यौगिकों को जलीय विलयन में उनके बढ़ते हुए क्षारकीय प्रबलता के क्रम में व्यवस्थित कीजिए :

7

CH<sub>3</sub>NH<sub>2</sub>, (CH<sub>3</sub>)<sub>3</sub>N, (CH<sub>3</sub>)<sub>2</sub>NH.

(ii) 'A' और 'B' की पहचान कीजिए :

$$C_6H_5NH_2 \xrightarrow{NaNO_2/HCl:273 K} A \xrightarrow{H_2O/H^+} B$$

(iii) कार्बिलऐमीन अभिक्रिया का समीकरण लिखिए।

56/2

3





C/1

Do as directed :

(i) Arrange the following compounds in the increasing order of their basic strength in aqueous solution :

CH<sub>3</sub>NH<sub>2</sub>, (CH<sub>3</sub>)<sub>3</sub>N, (CH<sub>3</sub>)<sub>2</sub>NH.

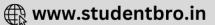
(ii) Identify 'A' and 'B' :

$$C_6H_5NH_2 \xrightarrow{NaNO_2/HCl:273 K} A \xrightarrow{H_2O/H^+} B$$

- (iii) Write equation of carbylamine reaction.
- 21. निम्नलिखित की व्याख्या कीजिए :
  - (i) ऐमीनो अम्ल सामान्य ऐमीनो अथवा कार्बोक्सिलिक अम्लों की तरह व्यवहार नहीं करते अपितु लवणों की भाँति व्यवहार करते हैं।
  - (ii) DNA के दो रज्जुक एक दूसरे के पूरक होते हैं।
  - (iii) ग्लूकोस की अभिक्रिया जो दर्शाती है कि ग्लूकोस की विवृत शृंखला संरचना में कार्बोनिल समूह एक ऐल्डिहाड समूह के रूप में उपस्थित है।

Explain the following :

- (i) Amino acids behave like salts rather than simple amines or carboxylic acids.
- (ii) The two strands of DNA are complementary to each other.
- (iii) Reaction of glucose that indicates that the carbonyl group is present as an aldehydic group in the open structure of glucose.
- 22. निम्नलिखित की भूमिका लिखिए :
  - (i) सोने के अयस्क से सोने के निष्कर्षण में NaCN की
  - (ii) शुद्ध ऐलुमिना से ऐलुमिनियम के निष्कर्षण में क्रायोलाइट की
  - (iii) निकेल के शोधन में CO की


Write the role of

- (i) NaCN in the extraction of gold from its ore.
- (ii) Cryolite in the extraction of aluminium from pure alumina.
- (iii) CO in the purification of Nickel.

56/2

C/1





3

23. मैथ्यू किसी बहुराष्ट्रीय कम्पनी में कार्य करते हैं जहाँ कार्य करने की परिस्थितियाँ अत्यन्त सख्त हैं । उन्होंने डॉक्टर की परामर्श के बिना ही नींद की गोलियाँ लेना आरम्भ कर दिया । जब उनके मित्र अमित को इस बारे में पता चला तो वह विक्षुब्ध (अशान्त) हुए और मैथ्यू को ऐसा न करने की सलाह दी । उसने मैथ्यू को तनावमुक्त रहने के लिए योगाभ्यास करने को कहा । योगाभ्यास करने के पश्चात मैथ्यू अब शिथिल और प्रसन्न रहते हैं ।

उपरोक्त उद्धरण पढ़ने के पश्चात निम्नलिखित प्रश्नों के उत्तर दीजिए :

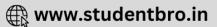
- (a) अमित की कम से कम दो विशेषताओं को सूचीबद्ध कीजिए जो मैथ्यू को प्रसन्न रखने में सहायक हुईं।
- (b) उसके भिन्न चिकित्सीय गुणधर्म के आधार पर निम्नलिखित में से विषम रासायनिक यौगिक को छाँटिए :

ल्यूमिनल, सेकोनल, फेनेसिटिन और इक्वैनिल

- (c) निद्राजनक गोलियों में प्रयुक्त रासायनिक यौगिकों के वर्ग का नाम बताइए।
- (d) बिना डॉक्टर से परामर्श लिए नींद की गोलियों की ख़ुराक लेना क्यों उचित नहीं है ?

Mathew works in a multinational company where the working conditions are tough. He started taking sleeping pills without consulting a doctor. When his friend Amit came to know about it he was disturbed and advised Mathew not to do so. He suggested that Mathew should instead practice yoga to be stress free. Mathew is now relaxed and happy after practicing yoga.

After reading the above passage, answer the following questions :


- (a) List at least two qualities of Amit that helped Mathew to be happy.
- (b) Pick out the odd chemical compound on the basis of its different medicinal property : Luminal, Seconal, Phenacetin and Equanil.
- (c) Name the class of chemical compounds used in sleeping pills.
- (d) Why is it advisable not to take the dose of sleeping pill without consulting a doctor ?

9

56/2

C/1





24. (i) (a) निम्नलिखित चुम्बकीय आघूर्णों का व्यवस्थित सरेखण है :

इस पदार्थ द्वारा किस प्रकार का चुम्बकत्व दर्शाया जाता है ?

- (b) (i) KCl (ii) AgCl द्वारा किस प्रकार का स्टॉइकियोमीट्री दोष दर्शाया जाता है ?
- (ii) 11.2 g cm<sup>-3</sup> घनत्व वाला कोई तत्त्व फलक-केन्द्रित घनीय जालक में क्रिस्टलीकृत होता है, जिसके कोर की लम्बाई 4 × 10<sup>-8</sup> cm है । तत्त्व का परमाण्विक द्रव्यमान परिकलित कीजिए । (N<sub>A</sub> = 6.02 × 10<sup>23</sup> mol<sup>-1</sup>)

#### अथवा

सिल्बर धातु फलक-केन्द्रित घनीय जालक में क्रिस्टलीकृत होती है । एकक कोष्ठिका की लम्बाई  $3.0 imes 10^{-8} \, {
m cm}$ ज्ञात की गई । सिल्वर की परमाणु त्रिज्या और घनत्व परिकलित कीजिए ।

(Ag का मोलर द्रव्यमान = 108 g mol<sup>-1</sup>,  $N_A = 6.02 \times 10^{23}$  mol<sup>-1</sup>).

(i) (a) Following is the schematic alignment of magnetic moments :

What type of magnetism is shown by this substance?

- (b) What type of stoichiometric defect is shown by (i) KCl (ii) AgCl?
- (ii) An element with density 11.2 g cm<sup>-3</sup> forms a fcc lattice with edge length of  $4 \times 10^{-8}$  cm. Calculate the atomic mass of the element. (N<sub>A</sub> =  $6.02 \times 10^{23}$  mol<sup>-1</sup>)

#### OR

Silver metal crystallises with a face centred cubic lattice. The length of the unit cell is found to be  $3.0 \times 10^{-8}$  cm. Calculate atomic radius and density of silver.

(Molar mass of Ag = 108 g mol<sup>-1</sup>,  $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$ ).

56/2

C/1

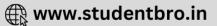




- 25. (i) क्या होता है जब -
  - (a) क्लोरीन गैस, NaOH के ठंडे और तनु विलयन के साथ अभिक्रिया करती है ?
  - (b)  $XeF_2$  का जलअपघटन होता है ?
  - (ii) निम्नलिखित के लिए उपयुक्त कारण दीजिए :
    - (a)  $SF_6$  जलअपघटन के प्रति निष्क्रिय है ।
    - (b) H<sub>3</sub>PO<sub>3</sub> द्विप्रोटी है।
    - (c) उत्कृष्ट गैसों में से केवल जीनॉन ही प्रमाणित रासायनिक यौगिकों को बनाने के लिए ज्ञात है।

#### अथवा

- (i) आबंध वियोजन एन्थैल्पी, इलेक्ट्रॉन लब्धि एन्थैल्पी तथा जलयोजन एन्थैल्पी जैसे प्राचलों को महत्त्व देते हुए F<sub>2</sub> तथा Cl<sub>2</sub> की ऑक्सीकारक क्षमता की तुलना कीजिए।
- (ii) निम्नलिखित अभिक्रियाओं को पूर्ण कीजिए :
  - (a)  $Cu + HNO_3(\overline{ng}) \rightarrow$
  - (b)  $Fe^{3+} + SO_2 + H_2O \rightarrow$
  - (c)  $XeF_4 + O_2F_2 \rightarrow$
- (i) What happens when
  - (a) chlorine gas reacts with cold and dilute solution of NaOH?
  - (b)  $XeF_2$  undergoes hydrolysis?
- (ii) Assign suitable reasons for the following :
  - (a)  $SF_6$  is inert towards hydrolysis.
  - (b)  $H_3PO_3$  is diprotic.
  - (c) Out of noble gases only Xenon is known to form established chemical compounds.


#### OR

- (i) Considering the parameters such as bond dissociation enthalpy, electron gain enthalpy and hydration enthalpy, compare the oxidizing power of  $F_2$  and  $Cl_2$ .
- (ii) Complete the following reactions :
  - (a)  $Cu + HNO_3(dilute) \rightarrow$
  - (b)  $Fe^{3+} + SO_2 + H_2O \rightarrow$
  - (c)  $XeF_4 + O_2F_2 \rightarrow$

56/2

C/1





- 26. (i) कारण दीजिए :
  - (a) HCN के संकलन के प्रति CH3-CHO की तुलना में HCHO अधिक अभिक्रियाशील है।
  - (b)  $CH_3$ -COOH की अपेक्षा  $O_2N$ - $CH_2$ -COOH का pKa मान निम्नतर है।
  - (c) ऐल्डिहाइडों और कीटोनों का एल्फा हाइड्रोजन अम्लीय प्रकृति का होता है।
  - (ii) निम्नलिखित यौगिक युगलों में विभेद के लिए सरल रासायनिक परीक्षण दीजिए :
    - (a) एथेनैल और प्रोपेनैल
    - (b) पेन्टेन-2-ओन और पेन्टेन-3-ओन

## अथवा

- (i) प्राप्त उत्पाद की संरचना लिखिए :
  - (a)  $CH_3 CH_2 COOH \xrightarrow{Cl_2, \text{ ener witewite}} \rightarrow$
  - (b)  $C_6H_5COCl \longrightarrow H_2, Pd BaSO_4 \longrightarrow$ 
    - सान्द्र KOH
- (ii) अधिक से अधिक दो पदों में आप निम्नलिखित परिवर्तन कैसे सम्पन्न करेंगे :
  - (a) प्रोपेनोन से प्रोपीन
  - (b) बेन्जिल क्लोराइड से फ़ेनिल एथेनोइक अम्ल
- (i) Give reasons :

(c)

- (a) HCHO is more reactive than  $CH_3$ -CHO towards addition of HCN.
- (b) pKa of  $O_2N$ -CH<sub>2</sub>-COOH is lower than that of CH<sub>3</sub>-COOH.
- (c) Alpha hydrogen of aldehydes & ketones is acidic in nature.
- (ii) Give simple chemical tests to distinguish between the following pairs of compounds :
  - (a) Ethanal and Propanal
  - (b) Pentan-2-one and Pentan-3-one

# OR

(i) Write structure of the product(s) formed :

(a) 
$$CH_3 - CH_2 - COOH \xrightarrow{Cl_2, \text{ red phosphorus}}$$

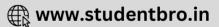
(b) 
$$C_6H_5COCl \longrightarrow H_2, Pd - BaSO_4 \longrightarrow$$

- (ii) How will you bring the following conversions in not more than two steps :
  - (a) Propanone to propene
  - (b) Benzyl chloride to phenyl ethanoic acid

56/2






# Senior School Certificate Examination 2018 Marking Scheme ------ Chemistry

### **General Instructions**

- The Marking Scheme provides general guidelines to reduce subjectivity in the marking. The answers given in the Marking Scheme are Suggested answers. The content is thus indicative. If a student has given any other answer which is different from the one given in the Marking Scheme, but conveys the same meaning, such answers should be given full weight-age.
- 2. The Marking Scheme carries only suggested value point for the answers. These are only guidelines and do not constitute the complete answers. The students can have their own expression and if the expression is correct the marks will be awarded accordingly.
- 3. The Head-Examiners have to go through the first five answer-scripts evaluated by each evaluator to ensure that the evaluation has been carried out as per the instruction given in the marking scheme. The remaining answer scripts meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration Marking Scheme should be strictly adhered to and religiously followed.
- 5. If a question has parts, please award marks in the right hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left hand margin and circled.
- 6. If a question does not have any parts, marks be awarded in the left-hand margin.
- 7. If a candidate has attempted an extra question, marks obtained in the question attempted first should be retained and the other answer should be scored out.
- 8. No Marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 9. A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- 10. Separate marking schemes for all the three sets have been provided.
- 11. As per orders of the Hon'ble Supreme Court. The candidate would now be permitted to obtain photocopy of the Answer Book on request on payment of the prescribed fee. All examiner/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.
- 12. The Examiners should acquaint themselves with the guidelines given in the Guidelines for sport Evaluation before starting the actual evaluation.
- Every Examiner should stay upto sufficiently reasonable time normally 5-6 hours every day and evaluate 20-25 answer books and should minimum 15-20 minutes to evaluate each answer book.
- 14. Every Examiner should acquaint himself/herself with the marking schemes of all the sets.

Get More Learning Materials Here :





# Marking scheme – 2017-18

# CHEMISTRY (043)/ CLASS XII (Compartment Exam)

# 56/2

| Q.No | Value Points                                                                                                                                                          | Marks |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1    | [Pt(NH <sub>3</sub> ) <sub>4</sub> ][CuCl <sub>4</sub> ]                                                                                                              | 1     |
| 2    | 2-Methylprop-1-ene / isobutene / structure                                                                                                                            | 1     |
| 3    | Order of reaction = ½                                                                                                                                                 | 1     |
| 4    | Due to the bond formation between the adsorbent and the adsorbate.                                                                                                    | 1     |
| 5    | C <sub>6</sub> H <sub>5</sub> COCH <sub>3</sub>                                                                                                                       | 1     |
| 6    | i) Mn                                                                                                                                                                 | 1     |
|      | ii) Mischmetall                                                                                                                                                       | 1     |
| 7    | F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F                                                                           | 1,1   |
| 8    | Intermolecular forces of attraction between carbon disulphide and acetone are weaker than the pure components.<br>Minimum boiling azeotrope at a specific composition | 1     |
| 9    | Quantity of charge required to deposit 108 g of silver = 96500 C                                                                                                      | 1/2   |
| 5    | Quantity of charge required to deposit 1.50 g of silver = $\frac{96500}{108} \times 1.50 = 1340.28 \text{ C}$                                                         | 1/2   |
|      |                                                                                                                                                                       | 1     |
|      | Time taken = $\frac{Q}{I} = \frac{1340.28}{1.50} = 893.5 \text{ s}$                                                                                                   |       |
|      | (or by any other suitable method)                                                                                                                                     |       |
|      | OR                                                                                                                                                                    |       |
| 9    | $\Lambda m = \frac{1000 k}{C}$                                                                                                                                        | 1/2   |
|      | $\Delta m = \frac{1.65 \times 10^{-4} \times 1000}{100}$                                                                                                              | 1/2   |
|      | $     \Lambda m = \frac{1000 k}{c}     \Lambda m = \frac{1.65 \times 10^{-4} \times 1000}{0.01}     = 16.5 \text{ S cm}^2 \text{ mol}^{-1} $                          | 1     |
| 10.  | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> Cl , due to primary halide which has less steric hindrance                                                            | 1,1   |
| 11   |                                                                                                                                                                       |       |
|      | i) $CH_2=CH-CH=CH_2+CH_2=CH$                                                                                                                                          | 1     |
|      |                                                                                                                                                                       |       |
|      |                                                                                                                                                                       | 1     |
|      | $\begin{array}{c} H_{2}C \\ H_{2}C \\ -CH_{2} \end{array}$                                                                                                            |       |
|      | ,                                                                                                                                                                     |       |
|      | $HOH_2C - CH_2OH + HOOC - COOH$                                                                                                                                       |       |
| 12   | 10.5                                                                                                                                                                  | 1     |
| 12   | Moles for MgBr <sub>2</sub> = $\frac{10.5}{184}$ = 0.0571 mol                                                                                                         |       |
|      | Molality = $\frac{0.0571}{200}$ × 1000 = 0.2855 m                                                                                                                     |       |
|      | i=3                                                                                                                                                                   | 1/2   |
|      | $\Delta T_f = i K_f m$                                                                                                                                                | 1/2   |
|      | = 3× 1.86 × 0.2855                                                                                                                                                    |       |
|      | =1.59 К                                                                                                                                                               | 1     |
|      | Freezing point = 273 – 1.59 = 271.41K or -1.59 °C                                                                                                                     | 1     |

CLICK HERE

Regional www.studentbro.in

Get More Learning Materials Here :

| 40  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 13  | i) Hexaamminenickel(II) chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                           |
|     | ii) Potassium hexacyanidoferrate(III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                           |
|     | iii) Tris(ethane-1,2-diamine)cobalt(III) ion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                           |
| 14  | i) The precipitated silver iodide adsorbs iodide ions from the dispersion medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                           |
|     | resulting in the negatively charged colloidal solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
|     | ii) Due to large surface area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                           |
|     | iii) If the dispersion medium is separated from the dispersed phase , the sol can be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|     | reconstituted by simply remixing with the dispersion medium. That is why these sols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                           |
|     | are also called reversible sols.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
| 15  | $C_2H_5OH \xrightarrow{H_2SO_4} CH_2 = CH_2 + H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
|     | 410 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/2                         |
|     | Step 1: Formation of protonated alcohol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
|     | $\begin{array}{c} H & H & H \\ H - C - C - {O} - H + {H}^{+} & \xrightarrow{Fast} H - {C} - C - {O} - {O} - H \\ H & H & H \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2                         |
|     | Ethanol Protonated alcohol<br>(Ethyl oxonium ion)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
|     | Step 2: Formation of carbocation: It is the slowest step and hence, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
|     | rate determining step of the reaction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
|     | $ \begin{array}{c} H & H \\ H - C - C \\ - C \\ H \end{array} \xrightarrow{f \to 0} H \xrightarrow{f \to 0} H - \begin{array}{c} H & H \\ \hline \hline C - C \\ H \end{array} \xrightarrow{f \to 0} H - \begin{array}{c} C - C \\ - C \\ - C \\ H \end{array} \xrightarrow{f \to 0} H - \begin{array}{c} H \\ - C \\ -$ | 1/                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2                         |
|     | Step 3: Formation of ethene by elimination of a proton.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|     | $H - \stackrel{\frown}{C^{2}} \stackrel{\downarrow}{C^{+}} \longleftrightarrow \stackrel{H}{\longleftrightarrow} \stackrel{H}{\overset{H}{\mapsto}} H \stackrel{H^{+}}{\overset{H^{+}}{\mapsto}} H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/                          |
|     | Ethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/2                         |
|     | ii) o-Nitrophenol is steam volatile due to intramolecular hydrogen bonding while p-nitrophenol is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           |
|     | less volatile due to intermolecular hydrogen bonding.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                           |
| 16  | i) Propene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                           |
|     | <ul> <li>ii) 4-nitrochlorobenzene and 2-nitrochlorobenzene / structures</li> <li>iii) Methylcyanide / Ethanenitrile / structure</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1}{2} + \frac{1}{2}$ |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                           |
| 17  | i) Rate = $k[A][B]^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                           |
|     | ii) Rate becomes 9 times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                           |
| 10  | iii) Rate becomes 8 times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                           |
| 18  | i) a) $5SO_3^{2-} + 2MnO_4^{-} + 6H^+ \longrightarrow 2Mn^{2+} + 3H_2O + 5SO_4^{2-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                           |
|     | b) $\operatorname{Cr}_2\operatorname{O}_7^{2-} + 14 \operatorname{H}^+ + 6 \operatorname{Fe}^{2+} \rightarrow 2 \operatorname{Cr}^{3+} + 6 \operatorname{Fe}^{3+} + 7 \operatorname{H}_2\operatorname{O}^{3+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                           |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                           |
|     | ii) $Cr^{2+} < Fe^{2+} < Mn^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           |
| 10  | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
| 18  | $3MnO_4^{2-} + 4H^+ \rightarrow 2MnO_4^{-} + MnO_2 + 2H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                           |
|     | (or any other correct equation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
|     | 4 FeCt $O_1$ + 8 Na $CO_2$ + 7 $O_2$ $\rightarrow$ 8 Na $CrO_2$ + 2 Fe $O_2$ + 8 $CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                           |
|     | iii) $2 \operatorname{CrO}_4^{2^-} + 2H^+ \rightarrow \operatorname{Cr}_2 \operatorname{O}_7^{2^-} + \operatorname{H}_2 \operatorname{O}_7^{2^-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                           |
| 19. | $Cu(s)   Cu^{2+}(aq)    Ag^{+}(aq)   Ag(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                           |
|     | i) Current will flow from silver to copper electrode in the external circuit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                           |
|     | iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/2 + 1/2                   |
|     | Cathode : $2Ag^{+}(aq) + 2e^{-} \rightarrow 2Ag(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
|     | Anode $-$ : Cu(s) $\rightarrow$ Cu <sup>2+</sup> (aq) + 2e <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
| 20. | i) $(CH_3)_3N < CH_3NH_2 < (CH_3)_2NH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                           |
|     | ii) A : $C_6H_5N_2^+ Cl^-$ B: $C_6H_5OH$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                           |
| 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                           |
|     | $R-NH_2 + CHCl_3 + 3KOH \xrightarrow{Heat} R-NC + 3KCl + 3H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                           |


Get More Learning Materials Here : 📕

| 21 | i) Due to the formation of zwitter ion.                                                                                   | 1                                                     |
|----|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 21 | ,                                                                                                                         | T                                                     |
|    | ii) The two strands are complementary to each other because the hydrogen bonds are formed between specific pairs of bases | 1                                                     |
|    | formed between specific pairs of bases                                                                                    | T                                                     |
|    | iii) Or glucose gets oxidised to gluconic acid on                                                                         |                                                       |
|    |                                                                                                                           |                                                       |
|    |                                                                                                                           | 1                                                     |
|    | CH <sub>2</sub> OH CH <sub>2</sub> OH Bromine water.                                                                      | 1                                                     |
| 22 | a) Gold is leached out in the form of a complex with dil. solution of NaCN in the presence of air/                        | 1                                                     |
| 22 | NaCN acts as leaching agent.                                                                                              | T                                                     |
|    | b) It lowers the melting point of alumina and makes it a good conductor of electricity.                                   | 1                                                     |
|    | c) CO forms a volatile complex with nickel which is further decomposed to give pure Ni metal.                             | 1                                                     |
| 23 | a) Tranquilizers                                                                                                          | 1                                                     |
| 25 |                                                                                                                           |                                                       |
|    | b) It may cause harmful effects and may acts as poison in case of overdose. Therefore, a                                  | 1                                                     |
|    | doctor should be always consulted.<br>c) Phenacetin                                                                       | 1                                                     |
|    | ,                                                                                                                         | 1                                                     |
| 24 | d) Empathetic , Caring , sensitive (or any other two relevant values)                                                     | 1                                                     |
| 24 | i) a) Antiferromagnetism                                                                                                  | 1<br>½ +½                                             |
|    | b) i) Schottky defect ii) Frenkel Defect                                                                                  | <sup>y</sup> <sub>2</sub> + <sup>y</sup> <sub>2</sub> |
|    | , zM                                                                                                                      | 1/                                                    |
|    | i) $d = \frac{zM}{a^3 Na}$                                                                                                | 1/2                                                   |
|    | z=4                                                                                                                       | 1/2                                                   |
|    | $11.2 = \frac{4 \times M}{(4 \times 10^{-8})^3 \times (6.02 \times 10^{23})}$                                             | 1/2                                                   |
|    | $(4 \times 10^{-8})^3 \times (6.02 \times 10^{23})$                                                                       |                                                       |
|    | M = 107.0  g/m c l                                                                                                        |                                                       |
|    | M= 107.9 g/mol<br>Atomic mass = 107.9 u                                                                                   | 1 ½                                                   |
|    | OR                                                                                                                        | /2                                                    |
| 24 | a                                                                                                                         | 1/2                                                   |
| 24 | $r = \frac{\alpha}{2\sqrt{2}}$                                                                                            | 1/2<br>1/2                                            |
|    | $=\frac{3.0 \times 10^{-8}}{10^{-8}}$                                                                                     | /2                                                    |
|    | $=\frac{1}{2\times 1.414}$<br>= 1.06 × 10 <sup>-8</sup> cm                                                                | 1                                                     |
|    |                                                                                                                           | 1                                                     |
|    | zM                                                                                                                        | 1/                                                    |
|    | $d = \frac{zM}{a^3 Na}$                                                                                                   | 1/2<br>1/2                                            |
|    | Z=4                                                                                                                       | /2                                                    |
|    | $d = \frac{4 \times 108}{(3 \times 10^{-8})^3 \times (6.02 \times 10^{23})}$                                              | 1                                                     |
|    | $= 26.6 \text{ g/cm}^3$                                                                                                   | 1                                                     |
|    |                                                                                                                           |                                                       |
| 25 | $2NaOH + Cl_2 \rightarrow NaCl + NaOCl + H_2O$                                                                            | 1                                                     |
| _  | i)a) (cold and dilute)                                                                                                    |                                                       |
|    |                                                                                                                           |                                                       |
|    | b) $2XeF_2$ (s) + $2H_2O(l) \rightarrow 2Xe$ (g) + 4 HF(aq) + $O_2(g)$                                                    | 1                                                     |
|    | ii) a) Sulphur is sterically protected by six F atoms, hence does not allow the water                                     | 1                                                     |
|    | molecules to attack.                                                                                                      |                                                       |
|    | b) It contains only two ionisable H-atoms which are present as –OH groups, thus behaves                                   | 1                                                     |
|    | as dibasic acid.                                                                                                          |                                                       |
|    | c) Xe has least ionization energy among the noble gases and hence it forms chemical                                       | 1                                                     |
|    | c) we have least following the hobic gases and hence it forms chemical compounds particularly with $O_2$ and $F_2$ .      | -                                                     |
|    | OR                                                                                                                        |                                                       |
|    |                                                                                                                           | •                                                     |
| 25 | ii) a. Fluorine has less negative electron gain enthalpy than chlorine,                                                   |                                                       |



|    | b. Fluorine has low enthalpy of dissociation than chlorine                                                                                                                                                                                                                                                                                                                                       | ½ ×4             |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|    | c. Fluorine has very high enthalpy of hydration than chlorine.                                                                                                                                                                                                                                                                                                                                   |                  |
|    | d. Fluorine is stronger oxidizing agent than chlorine.                                                                                                                                                                                                                                                                                                                                           |                  |
|    | ii) a)                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|    | iii) $3Cu + 8 HNO_3(dilute) \rightarrow 3Cu(NO_3)_2 + 2NO + 4H_2O$                                                                                                                                                                                                                                                                                                                               | 1                |
|    | b) 2 Fe <sup>3+</sup> + SO <sub>2</sub> + 2H <sub>2</sub> O $\rightarrow$ 2 Fe <sup>2+</sup> + SO <sub>4</sub> <sup>2-</sup> + 4 H <sup>+</sup>                                                                                                                                                                                                                                                  | 1                |
|    | $(XeF_4 + O_2F_2 \rightarrow XeF_6 + O_2)$                                                                                                                                                                                                                                                                                                                                                       | 1                |
|    | (Balancing of equations may be ignored)                                                                                                                                                                                                                                                                                                                                                          |                  |
| 26 | i)a) Due to +I effect of methyl group in CH <sub>3</sub> CHO.                                                                                                                                                                                                                                                                                                                                    | 1                |
|    | b)due to –I effect of nitro group in nitroacetic acid.                                                                                                                                                                                                                                                                                                                                           | 1                |
|    | c) Due to the strong electron withdrawing effect of the carbonyl group and resonance                                                                                                                                                                                                                                                                                                             | 1                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                  | -                |
|    | stabilisation of the conjugate base.<br>ii) a) Add NaOH and $I_2$ to both the compounds and heat, ethanal gives yellow ppt of iodoform.<br>b) Add NaOH and $I_2$ to both the compounds and heat, pentan-2-one gives yellow ppt of                                                                                                                                                                | 1                |
|    | stabilisation of the conjugate base.<br>ii) a) Add NaOH and $I_2$ to both the compounds and heat, ethanal gives yellow ppt of iodoform.                                                                                                                                                                                                                                                          |                  |
|    | stabilisation of the conjugate base.<br>ii) a) Add NaOH and $I_2$ to both the compounds and heat, ethanal gives yellow ppt of iodoform.<br>b) Add NaOH and $I_2$ to both the compounds and heat, pentan-2-one gives yellow ppt of                                                                                                                                                                | 1                |
| 26 | stabilisation of the conjugate base.<br>ii) a) Add NaOH and $I_2$ to both the compounds and heat, ethanal gives yellow ppt of iodoform.<br>b) Add NaOH and $I_2$ to both the compounds and heat, pentan-2-one gives yellow ppt of<br>iodoform.                                                                                                                                                   | 1                |
| 26 | stabilisation of the conjugate base.<br>ii) a) Add NaOH and I <sub>2</sub> to both the compounds and heat, ethanal gives yellow ppt of iodoform.<br>b) Add NaOH and I <sub>2</sub> to both the compounds and heat, pentan-2-one gives yellow ppt of<br>iodoform.<br>OR                                                                                                                           | 1                |
| 26 | stabilisation of the conjugate base.<br>ii) a) Add NaOH and I <sub>2</sub> to both the compounds and heat, ethanal gives yellow ppt of iodoform.<br>b) Add NaOH and I <sub>2</sub> to both the compounds and heat, pentan-2-one gives yellow ppt of<br>iodoform.<br>OR<br>a)                                                                                                                     | 1                |
| 26 | stabilisation of the conjugate base.<br>ii) a) Add NaOH and I <sub>2</sub> to both the compounds and heat, ethanal gives yellow ppt of iodoform.<br>b) Add NaOH and I <sub>2</sub> to both the compounds and heat, pentan-2-one gives yellow ppt of<br>iodoform.<br>OR<br>a)<br>i)a)                                                                                                             | 1                |
| 26 | stabilisation of the conjugate base.<br>ii) a) Add NaOH and I <sub>2</sub> to both the compounds and heat, ethanal gives yellow ppt of iodoform.<br>b) Add NaOH and I <sub>2</sub> to both the compounds and heat, pentan-2-one gives yellow ppt of iodoform.<br>OR<br>a)<br>i)a)<br>CH <sub>3</sub> - CH-COOH                                                                                   | 1                |
| 26 | stabilisation of the conjugate base.<br>ii) a) Add NaOH and I <sub>2</sub> to both the compounds and heat, ethanal gives yellow ppt of iodoform.<br>b) Add NaOH and I <sub>2</sub> to both the compounds and heat, pentan-2-one gives yellow ppt of iodoform.<br>OR<br>a)<br>i)a)<br>CH <sub>5</sub> - CH-COOH<br>I<br>CI,                                                                       | 1 1 1 1          |
| 26 | stabilisation of the conjugate base.<br>ii) a) Add NaOH and I <sub>2</sub> to both the compounds and heat, ethanal gives yellow ppt of iodoform.<br>b) Add NaOH and I <sub>2</sub> to both the compounds and heat, pentan-2-one gives yellow ppt of<br>iodoform.<br>OR<br>a)<br>i)a)<br>CH <sub>3</sub> - CH-COOH<br>I<br>CI,<br>b) C <sub>6</sub> H <sub>5</sub> CHO                            | 1<br>1<br>1<br>1 |
| 26 | stabilisation of the conjugate base.<br>ii) a) Add NaOH and I <sub>2</sub> to both the compounds and heat, ethanal gives yellow ppt of iodoform.<br>b) Add NaOH and I <sub>2</sub> to both the compounds and heat, pentan-2-one gives yellow ppt of<br>iodoform.<br>OR<br>a)<br>i)a)<br>CH <sub>5</sub> -CH-COOH<br>cI,<br>b) C <sub>6</sub> H <sub>5</sub> CHO<br>c) CH <sub>3</sub> OH + HCOOK | 1<br>1<br>1<br>1 |



